
domingo
REDES

A medida que avanzamos hacia los últimos años de este siglo, se ha dado una rápida convergencia de estas áreas, y también las diferencias entre la captura, transporte almacenamiento y procesamiento de información están desapareciendo con rapidez. Organizaciones con centenares de oficinas dispersas en una amplia área geográfica esperan tener la posibilidad de examinar en forma habitual el estaso actual de todas ellas, simplemente oprimiendo una tecla. A medida que crece nuestra habilidad para recolectar procesar y distribuir información, la demanda de mas sofisticados procesamientos de información crece todavía con mayor rapidez.

INTERNET


Internet ha llegado a gran parte de los hogares y de las empresas de los países ricos, en este aspecto se ha abierto una brecha digital con los países pobres, en los cuales la penetración de Internet y las nuevas tecnologías es muy limitada para las personas.
No obstante, en el transcurso del tiempo se ha venido extendiendo el acceso a Internet en casi todas las regiones del mundo, de modo que es relativamente sencillo encontrar por lo menos 2 computadoras conectadas en regiones remotas.
Desde una perspectiva cultural del conocimiento, Internet ha sido una ventaja y una responsabilidad. 

Para la gente que está interesada en otras culturas, la red de redes proporciona una cantidad significativa de información y de una interactividad que sería inasequible de otra manera. Internet entró como una herramienta de globalización, poniendo fin al aislamiento de culturas. Debido a su rápida masificación e incorporación en la vida del ser humano, el espacio virtual es actualizado constantemente de información, fidedigna o irrelevante.
TELECOMUNICACIONES

La telecomunicación (del prefijo griego tele, "distancia" o "lejos", "comunicación a distancia") es una técnica consistente en transmitir un mensaje desde un punto a otro, normalmente con el atributo típico adicional de ser bidireccional. El término telecomunicación cubre todas las formas de comunicación a distancia, incluyendo radio, telegrafía, televisión, telefonía, transmisión de datos e interconexión de ordenadores a nivel de enlace. El Día Mundial de la Telecomunicación se celebra el 17 de mayo.
La base matemática sobre la que se desarrollan las telecomunicaciones fue desarrollada por el físico inglés James Clerk Maxwell. Maxwell, en el prefacio de su obra Treatise on Electricity and Magnetism (1873), declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday.
La base matemática sobre la que se desarrollan las telecomunicaciones fue desarrollada por el físico inglés James Clerk Maxwell. Maxwell, en el prefacio de su obra Treatise on Electricity and Magnetism (1873), declaró que su principal tarea consistía en justificar matemáticamente conceptos físicos descritos hasta ese momento de forma únicamente cualitativa, como las leyes de la inducción electromagnética y de los campos de fuerza, enunciadas por Michael Faraday.

ANTECEDENTES DEL SOFTWARE


Posteriormente, con la aparicion de tecnicas estructuradas y con base en las experiencias de los programadores se mejoro la productividad del software. Sin embargo, este software seguia teniendo fallas, como por ejemplo: documentacion inadecuada, dificultad para su correcto funcionamiento, y por su puesto, insatisfaccion de cliente.
Conforme se incrementaba la tecnología de los computadores, también crecía la demanda de los productos de software, pero mucho mas lentamente, tanto que hacia 1990 se decía que las posibilidades de software estaban retrasadas respecto a las del hardware en un mínimo de dos generaciones de procesadores y que la distancia continuaba aumentando.
En la actualidad muchos de estos problemas subsisten en el desarrollo de software, con una dificultad adicional relacionada con la incapacidad para satisfacer totalmente la gran demanda y exigencias por parte de los clientes.
En la actualidad muchos de estos problemas subsisten en el desarrollo de software, con una dificultad adicional relacionada con la incapacidad para satisfacer totalmente la gran demanda y exigencias por parte de los clientes.
HISTORIA DEL SOFTWARE

Sin embargo, dentro de estos cambios, las personas encargadas de la elaboración del software se han enfrentado a problemas muy comunes: unos debido a la exigencia cada vez mayor en la capacidad de resultados del software, debido al permanente cambio de condiciones lo que aumenta su complegidad y obsolescencia; y otros, debido a la carencia de herramientas adecuadas y estándares de tipo organizacional encaminados al mejoramiento de los procesos en el desarrollo del software.

TECNOLOGIAS DE TARJETAS PERFORADAS
Tan temprano como en 1725, Basile Bouchon, quien fue alumno de Carlos Bruné, usó un lazo de papel perforado en un telar para establecer el patrón a ser reproducido en la tela, y en 1726 su compañero de trabajo, Jean-Baptiste Falcon, mejoró su diseño al usar tarjetas perforadas de papel unidas una a la otra para la eficacia en adaptar y cambiar el programa. El telar de Bouchon-Falcon era semiautomático y requería la alimentación manual del programa.
En 1801, Joseph Marie Jacquard desarrolló un telar en el que el patrón que era tejido era controlado por tarjetas perforadas. La serie de tarjetas podría ser cambiada sin cambiar el diseño mecánico del telar. Esto un hito en programabilidad.
En 1801, Joseph Marie Jacquard desarrolló un telar en el que el patrón que era tejido era controlado por tarjetas perforadas. La serie de tarjetas podría ser cambiada sin cambiar el diseño mecánico del telar. Esto un hito en programabilidad.

En los años 1890, Herman Hollerith inventó una máquina tabuladora usando tarjetas perforadas.
En 1833, Charles Babbage avanzó desde desarrollar su máquina diferencial a desarrollar un diseño más completo, la máquina analítica, que, para su programación, tomaría prestada directamente las tarjetas perforadas del telar Jacquar. [1].
En 1835 Charles Babbage describió su máquina analítica. Era el plan de una computadora programable de propósito general, empleando tarjetas perforadas para la entrada y un motor de vapor para la energía. Una invención crucial fue usar engranajes para la función servida por los granos de un ábaco. En un sentido real, todos los ordenadores contienen ábacos automáticos (técnicamente llamados como la unidad aritmético lógica o la unidad de punto flotante).
Su idea inicial era usar las tarjetas perforadas para controlar una máquina que podía calcular e imprimir con precisión enorme las tablas logarítmicas (una máquina de propósito específico). La idea de Babbage pronto se desarrolló en una computadora programable de propósito general, su máquina analítica.
A pesar que su diseño era brillante y los planes eran probablemente correctos, o por lo menos depurables, el proyecto fue retardado por varios problemas. Babbage era un hombre difícil para trabajar con él y discutía con cualquier persona que no respetara sus ideas. Todas las partes para su máquina tenían que ser hechas a mano. En una máquina con miles de partes, a veces los pequeños errores en cada elemento pueden acumularse, terminando en grandes discrepancias. Esto requería que estas partes fueran mucho mejores que las tolerancias que podían obtenerse con la tecnología de esa época. El proyecto se disolvió en conflictos con el artesano que construyó las partes y fue terminado cuando se agotó el financiamiento del gobierno.
Ada Lovelace, hija de Lord Byron, tradujo y agregó notas al "Sketch of the Analytical Engine" por Federico Luigi, Conte Menabrea. Ella ha sido asociada cercanamente con Babbage. Algunos afirman que ella fue la primer programador de computadoras del mundo, no obstante esta afirmación y el valor de sus otras contribuciones son discutidos por muchos.
Una reconstrucción la Máquina Diferencial II, un diseño anterior, más limitado, ha estado operacional desde 1991 en el Museo de Ciencia de Londres. Con algunos cambios triviales, trabaja como Babbage la diseñó y demuestra que Babbage estaba correcto en teoría.
El museo usó máquinas herramientas operadas por computador para construir las partes necesarias, siguiendo las tolerancias que habría podido alcanzar un maquinista de ese período. Algunos creen que la tecnología de ese tiempo no podía producir partes de suficiente precisión, aunque esto aparece ser falso. La falla de Babbage en terminar la máquina puede ser principalmente atribuida a dificultades no solamente relacionadas con la política y el financiamiento, pero también con su deseo de desarrollar una computadora cada vez más sofisticada. Hoy, muchos en el campo de la computación llaman a esta clase obsesión creeping featuritis (algo así como "caracterititis creciente", es decir, el deseo de agregar cada vez más y más características).
En 1890, la Oficina del Censo de los Estados Unidos usó tarjetas perforadas, las máquinas de ordenamiento, y las máquinas tabuladoras diseñadas por Herman Hollerith para manejar la inundación de datos del censo decenial ordenado por la constitución de Estados Unidos. La compañía de Hollerith eventualmente se convirtió en el núcleo de IBM. La IBM desarrolló la tecnología de la tarjeta perforada en una poderosa herramienta para el procesamiento de datos de negocios y produjo una extensa línea de equipos de registros de unidades?? especializados. Por 1950, la tarjeta de IBM había llegado a ser ubicua en la industria y el gobierno. La advertencia impresa en la mayoría de las tarjetas previstas para la circulación como documentos (cheques, por ejemplo), "No doblar, no perforar ni mutilar", se convirtió en un lema para la era posterior a la Segunda Guerra Mundial.[2]
Siguiendo los pasos de Babbage, aunque ignorante de este anterior trabajo, Percy Ludgate, un contable de Dublín, Irlanda, diseñó independientemente una computadora mecánica programable, que describió en un trabajo que fue publicado en 1909.
Los artículos de Leslie Comrie sobre métodos de tarjetas perforadas, y las publicaciones de Wallace Eckert sobre Métodos de Tarjetas Perforadas en la Computación Científica en 1940, describieron técnicas que fueron suficientemente avanzadas para solucionar ecuaciones diferenciales, realizar multiplicación y división usando representaciones de punto flotante, todo ello hecho con tarjetas perforadas y las máquinas de registro de unidades??. La Oficina de Computación Astronómica Thomas J. Watson, de la Universidad de Columbia realizó cálculos astronómicos representando el estado del arte en la Computación.
En muchas instalaciones de computación, las tarjetas perforadas fueron usadas hasta (y después) del final de los años 1970. Por ejemplo, en muchas universidades alrededor del mundo los estudiantes de ciencia e ingeniería someterían sus asignaciones de programación al centro de computación local en forma de una pila de tarjetas, una tarjeta por línea de programa, y entonces tenían que esperar que el programa estuviera en cola para ser procesado, compilado, y ejecutado. En espera para la impresión de cualquier resultado, marcado con la identificación de quien lo solicitó, sería puesto en una bandeja de salida fuera del centro de computación. En muchos casos estos resultados serían solamente un listado de mensajes de error con respecto a la sintaxis, etc, del programa, necesitando otro ciclo de edición-compilación-ejecución
En 1833, Charles Babbage avanzó desde desarrollar su máquina diferencial a desarrollar un diseño más completo, la máquina analítica, que, para su programación, tomaría prestada directamente las tarjetas perforadas del telar Jacquar. [1].
En 1835 Charles Babbage describió su máquina analítica. Era el plan de una computadora programable de propósito general, empleando tarjetas perforadas para la entrada y un motor de vapor para la energía. Una invención crucial fue usar engranajes para la función servida por los granos de un ábaco. En un sentido real, todos los ordenadores contienen ábacos automáticos (técnicamente llamados como la unidad aritmético lógica o la unidad de punto flotante).
Su idea inicial era usar las tarjetas perforadas para controlar una máquina que podía calcular e imprimir con precisión enorme las tablas logarítmicas (una máquina de propósito específico). La idea de Babbage pronto se desarrolló en una computadora programable de propósito general, su máquina analítica.
A pesar que su diseño era brillante y los planes eran probablemente correctos, o por lo menos depurables, el proyecto fue retardado por varios problemas. Babbage era un hombre difícil para trabajar con él y discutía con cualquier persona que no respetara sus ideas. Todas las partes para su máquina tenían que ser hechas a mano. En una máquina con miles de partes, a veces los pequeños errores en cada elemento pueden acumularse, terminando en grandes discrepancias. Esto requería que estas partes fueran mucho mejores que las tolerancias que podían obtenerse con la tecnología de esa época. El proyecto se disolvió en conflictos con el artesano que construyó las partes y fue terminado cuando se agotó el financiamiento del gobierno.
Ada Lovelace, hija de Lord Byron, tradujo y agregó notas al "Sketch of the Analytical Engine" por Federico Luigi, Conte Menabrea. Ella ha sido asociada cercanamente con Babbage. Algunos afirman que ella fue la primer programador de computadoras del mundo, no obstante esta afirmación y el valor de sus otras contribuciones son discutidos por muchos.
Una reconstrucción la Máquina Diferencial II, un diseño anterior, más limitado, ha estado operacional desde 1991 en el Museo de Ciencia de Londres. Con algunos cambios triviales, trabaja como Babbage la diseñó y demuestra que Babbage estaba correcto en teoría.
El museo usó máquinas herramientas operadas por computador para construir las partes necesarias, siguiendo las tolerancias que habría podido alcanzar un maquinista de ese período. Algunos creen que la tecnología de ese tiempo no podía producir partes de suficiente precisión, aunque esto aparece ser falso. La falla de Babbage en terminar la máquina puede ser principalmente atribuida a dificultades no solamente relacionadas con la política y el financiamiento, pero también con su deseo de desarrollar una computadora cada vez más sofisticada. Hoy, muchos en el campo de la computación llaman a esta clase obsesión creeping featuritis (algo así como "caracterititis creciente", es decir, el deseo de agregar cada vez más y más características).
En 1890, la Oficina del Censo de los Estados Unidos usó tarjetas perforadas, las máquinas de ordenamiento, y las máquinas tabuladoras diseñadas por Herman Hollerith para manejar la inundación de datos del censo decenial ordenado por la constitución de Estados Unidos. La compañía de Hollerith eventualmente se convirtió en el núcleo de IBM. La IBM desarrolló la tecnología de la tarjeta perforada en una poderosa herramienta para el procesamiento de datos de negocios y produjo una extensa línea de equipos de registros de unidades?? especializados. Por 1950, la tarjeta de IBM había llegado a ser ubicua en la industria y el gobierno. La advertencia impresa en la mayoría de las tarjetas previstas para la circulación como documentos (cheques, por ejemplo), "No doblar, no perforar ni mutilar", se convirtió en un lema para la era posterior a la Segunda Guerra Mundial.[2]
Siguiendo los pasos de Babbage, aunque ignorante de este anterior trabajo, Percy Ludgate, un contable de Dublín, Irlanda, diseñó independientemente una computadora mecánica programable, que describió en un trabajo que fue publicado en 1909.
Los artículos de Leslie Comrie sobre métodos de tarjetas perforadas, y las publicaciones de Wallace Eckert sobre Métodos de Tarjetas Perforadas en la Computación Científica en 1940, describieron técnicas que fueron suficientemente avanzadas para solucionar ecuaciones diferenciales, realizar multiplicación y división usando representaciones de punto flotante, todo ello hecho con tarjetas perforadas y las máquinas de registro de unidades??. La Oficina de Computación Astronómica Thomas J. Watson, de la Universidad de Columbia realizó cálculos astronómicos representando el estado del arte en la Computación.
En muchas instalaciones de computación, las tarjetas perforadas fueron usadas hasta (y después) del final de los años 1970. Por ejemplo, en muchas universidades alrededor del mundo los estudiantes de ciencia e ingeniería someterían sus asignaciones de programación al centro de computación local en forma de una pila de tarjetas, una tarjeta por línea de programa, y entonces tenían que esperar que el programa estuviera en cola para ser procesado, compilado, y ejecutado. En espera para la impresión de cualquier resultado, marcado con la identificación de quien lo solicitó, sería puesto en una bandeja de salida fuera del centro de computación. En muchos casos estos resultados serían solamente un listado de mensajes de error con respecto a la sintaxis, etc, del programa, necesitando otro ciclo de edición-compilación-ejecución

PRIMERAS CALCULADORAS
Durante milenios, la humanidad ha usado dispositivos para ayudar en los cálculos. El dispositivo de contar más temprano fue probablemente una cierta forma de palito de contar. Posteriores ayudas para mantener los registros incluyen la arcilla de Fenicia que representaban conteos de artículos en contenedores, probablemente ganado o granos. Una máquina más orientada hacia la aritmética es el ábaco. La forma más temprana de ábaco, el ábaco de polvo, había sido usado en Babilonia tan temprano como en 2.400 A.C.. Desde entonces, muchas otras formas de tablas de contar han sido inventadas, por ejemplo en una casa de cuenta medieval, un paño a cuadros sería colocado en una mesa, como una ayuda para calcular sumas de dinero, y los marcadores se movían alrededor en ella según ciertas reglas.
Los engranajes están en el corazón de dispositivos mecánicos como la calculadora de Curta.
Un número de computadores análogos fueron construidos en épocas antiguas y medioevales para realizar cálculos astronómicos. Éstos incluyen el mecanismo de Anticitera y el astrolabio de la Grecia antigua (c. 150-100 A.C.). Estos dispositivos son usualmente considerados como las primeras computadoras análogas. Otras versiones tempranas de dispositivos mecánicos usados para realizar ciertos tipos de cálculos incluyen el Planisferio; algunas de las invenciones de Al-Biruni (c. AD 1000); el Equatorium de Azarquiel (c. AD 1015); y los computadores astronómicos análogos de otros astrónomos e ingenieros musulmanes medievales.
Un número de computadores análogos fueron construidos en épocas antiguas y medioevales para realizar cálculos astronómicos. Éstos incluyen el mecanismo de Anticitera y el astrolabio de la Grecia antigua (c. 150-100 A.C.). Estos dispositivos son usualmente considerados como las primeras computadoras análogas. Otras versiones tempranas de dispositivos mecánicos usados para realizar ciertos tipos de cálculos incluyen el Planisferio; algunas de las invenciones de Al-Biruni (c. AD 1000); el Equatorium de Azarquiel (c. AD 1015); y los computadores astronómicos análogos de otros astrónomos e ingenieros musulmanes medievales.
John Napier (1550-1617) observó que la multiplicación y la división de números pueden ser realizadas por la adición y la sustracción, respectivamente, de los logaritmos de esos números. Mientras producía las primeras tablas logarítmicas Napier necesitó realizar muchas multiplicaciones, y fue en este punto que diseñó los huesos de Napier, un dispositivo similar a un ábaco usado para la multiplicación y la división.
Puesto que los números reales pueden ser representados como distancias o intervalos en una línea, la regla de cálculo fue inventada en los años 1920 para permitir que las operaciones de multiplicación y de división se realizarán perceptiblemente más rápidamente que lo que era posible previamente. Las reglas de cálculo fueron usadas por generaciones de ingenieros y de otros trabajadores profesionales con inclinación matemática, hasta la invención de la calculadora de bolsillo. Los ingenieros del programa Apollo para enviar a un hombre a la Luna, hicieron muchos de sus cálculos en reglas de cálculo, que eran exactas a tres o cuatro dígitos significativos.
La regla de cálculo, una calculadora mecánica básica, facilita la multiplicación y la división.
Calculadora mecánica de 1914
En 1623, Wilhelm Schickard construyó la primera calculadora mecánica digital y por lo tanto se convirtió en el padre de la era de la computación.[1] Puesto que su máquina usó técnicas tales como dientes y engranajes desarrollados primero para los relojes, también fue llamada un 'reloj calculador'. Fue puesto en uso práctico por su amigo Johannes Kepler, quien revolucionó la astronomía.
Una original calculadora de Pascal (1640) es presentada en el museo de Zwinger. Siguieron las máquinas de Blaise Pascal (la Pascalina, 1642) y de Gottfried Wilhelm von Leibniz (1671). Alrededor 1820, Charles Xavier Thomas de Colmar creó la primera calculadora mecánica excitosa producida en serie, El Aritmómetro de Thomas, que podía sumar, restar, multiplicar, y dividir. Estaba basado principalmente en el trabajo de Leibniz. Las calculadoras mecánicas, como el Addiator de base diez, el Comptómetro, la calculadora Monroe, el Curta y el Addo-X permanecieron en uso hasta los años 1970.
Leibniz también describió el sistema de numeración binario, un ingrediente central de todas las computadoras modernas. Sin embargo, hasta los años 1940, muchos diseños subsecuentes fueron basados en el difícil de implantar sistema decimal, incluyendo las máquinas de Charles Babbage de los años 1800 e incluso el ENIAC de 1945.

HISTORIA DEL HARDWARE


Los dispositivos de ayuda provenientes de la computación han cambiado de simples dispositivos de grabación y conteo al ábaco, la regla de cálculo, el computador analogo y los más recientes, la computadora u ordenador. Hasta hoy, un usuario experimentado del ábaco usando un dispositivo que tiene más de 100 años puede a veces completar operaciones básicas más rápidamente que una persona inexperta en el uso de las calculadoras electrónicas, aunque en el caso de los cálculos más complejos, los computadores son más efectivos que el humano más experimentado.
SISTEMAS DE INFORMACION
Todo ese conjunto de elementos interactúan entre si para procesar los datos y la información (incluyendo procesos manuales y automáticos) y distribuirla de la manera más adecuada posible en una determinada organización en función de sus objetivos. Normalmente el término es usado de manera errónea como sinónimo de sistema de información informático, estos son el campo de estudio de la tecnología de la información (IT), y aunque puedan formar parte de un sistema de información (como recurso material), por sí solos no se pueden considerar como sistemas de información, este concepto es más amplio que el de sistema de información informático. No obstante un sistema de información puede estar basado en el uso de computadoras. Según la definición de Langefors[1] este tipo de sistemas son:
Un medio implementado tecnológicamente para grabar, almacenar y distribuir expresiones lingüísticas.

- Así como para extraer conclusiones a partir de dichas expresiones.
Suscribirse a:
Entradas (Atom)